

ECOSHIP

Aligning Incentives in the Shipping Industry to Achieve Positive Economic & Environmental Impacts

Outline

Background

- Challenges: climate and health implications of shipping
- Opportunities: significant emissions reduction potential with low marginal costs
- Barrier: Split incentive
- Solution: EcoShip Fund
 - EcoShip Fund Model: A Win-Win approach
 - Financial Incentive: Above average IRR
 - Global Benefits: Significant emission reduction
 - Risk: Disclosure and Mitigation
- Path Forward
 - Next Steps: A Ten-Year Plan

BACKGROUND

CO₂ Emissions from Shipping until 2040

CO₂ emissions will continue to grow, doubling current level by 2040

ICCT (2011) "Long-term potential for increased shipping efficiency" http://www.theicct.org/long-term-potential-increased-shipping-efficiency

Health Implications of High Sulfur Fuel

 High sulfur marine fuel generated a large amount of PM_{2.5}, responsible for 87,000 premature deaths in 2012

Substantial Technical & Operational Potential in Shipping Industry to Increase Energy Efficiency

Operational

Weather routing **1-4%** Autopilot upgrade **1-3%** Speed reduction **10-30%**

Auxiliary power

Efficient pumps, fans **0-1%** High efficiency lighting **0-1%** Solar panel **0-3%**

Aerodynamics

Air lubrication **5-15%** Wind engine **3-12%** Kite **2-10%**

Thrust efficiency

Propeller polishing **3-8%** Propeller upgrade **1-3%** Prop/rudder retrofit **2-6%**

Engine efficiency

Waste heat recovery **6-8%** Engine controls **0-1%** Engine common rail **0-1%** Engine speed de-rating **10-30%**

Hydrodynamics

Hull cleaning **1-10%** Hull coating **1-5%** Water flow optimization **1-4%**

ICCT (2011) "Long-term potential for increased shipping efficiency" http://www.theicct.org/long-term-potential-increased-shipping-efficiency

Significant portions of these opportunities are cost effective

Maximum abatement potential, million metric tonnes (MMT) CO, per year

Split Incentive Barrier

ECOSHIP FUND

How EcoShip Works?

Financial Perspective

Cash Outflow

 Fund the shipowner for 80% of CAPEX investment (maintenance & other costs incurred by the ship-owner)

Cash Generation

- Cash is generated through net fuel savings
- EcoShip and charterer split the fuel savings

Cash Inflow

- Principal and interest payments
- 2.5% management fee
- Free cash flow split between EcoFund and Charterer
- Target IRR of at least 20% for EcoShip

Return to EcoShip

Application of Water Flow Optimization Technology to 150,000 deadweight bulk carrier

IRR for EcoShip – Different Scenarios

Environmental Benefits of EcoShip

Substantial CO₂ and SOx savings

- 150 mmt CO₂ savings: 27% of fossil fuel based CO₂ in Germany
- 2.7 mmt SOx savings: 40% SOx emissions in the US

Risk Mitigation

Default risks

- Risk: Ship owners or charters may default in the event of economic hardship
- Solution: The fund will have the asset of ship owners (i.e. ships where the energysaving technologies are retrofitted) as a collateral
- **Risk**: Ship owners or charters may collude and default from the fund arrangement
- Solution: The fund can create an escrow account where charterers deposit part of their cash flows as a collateral

Fuel risk

- Risk: Persistently low fuel price decreases the fuel saving
- **Solution**: The fund can enter the futures market to lock in a target fuel price

Disposition risk

- Risk: When ship owners want to resell or re-charter the ship, they may not be able to find willing buyers or charterers for this arrangement
- Solution: The fund can sell the cash flow to ship owners or other financial institutions

PATH FORWARD

Next Steps

Phase I: Year 1-2

- Work with a U.S. ship owner
- Collaborate with America Bureau of Shipping
- Leverage knowledge basis to build up the success of EcoShip

Phase II: Year 3-7

- Scale up the success in international market
- Work on the platform of International Maritime Organization
- Take the opportunity of ongoing regulatory pressure on ship efficiency and sulfur levels in marine diesel fuels

Phase III: Year 8-10

Time the market and prepare for an exit strategy

QUESTIONS

APPENDIX

Climate Impact of International Shipping

Shipping emits 1,000 million metric tons (mmt) CO₂ per year

Oceania (2011) "Shipping Solutions: Technological and operational methods available to reduce CO2"

The fuel quality of marine diesel fuel

Shipping uses the type of diesel fuel with extremely high sulfur level

fuel sulfur content (parts per million).

Barriers to Energy Efficiency Implementation Measures

Market failures	 Principal- agent problem Imperfect asymmetric information 					
Non-market	Hidden costsAccess to capital					
Tallures	• Risks					
Organizational & Behavioral	 Power, culture Values, priorities, inertia, credibility and trust 					

Cash flow estimate in the example of the EcoFund

Cash flow calculation

		1	2	3	4	5	6	7	8	9
Fuel savings		\$252,274	\$257,320	\$262,466	\$267,715	\$273,070	\$278,531	\$284,102	\$289,784	\$295,579
Depreciation		(\$68,889)	(\$68,889)	(\$68,889)	(\$68,889)	(\$68,889)	(\$68,889)	(\$68,889)	(\$68,889)	(\$68,889)
Principle payment to bank		(\$39,720)	(\$42,897)	(\$46,329)	(\$50,035)	(\$54,038)	(\$58,361)	(\$63,030)	(\$68,072)	(\$73,518)
Other extra cost		(\$10,000)	(\$10,000)	(\$10,000)	(\$10,000)	(\$10,000)	(\$10,000)	(\$10,000)	(\$10,000)	(\$10,000)
After tax cash Flow		\$93,566	\$94,873	\$96,074	\$97,154	\$98,100	\$98,897	\$99,528	\$99,976	\$100,221
Add depreciation back		\$162,455	\$163,762	\$164,963	\$166,043	\$166,989	\$167,786	\$168,417	\$168,865	\$169,109
Minus cash flow to creditor		(\$39,680)	(\$39,680)	(\$39,680)	(\$39,680)	(\$39,680)	(\$39,680)	(\$39,680)	(\$39,680)	(\$39,680)
Available FCF to equity owner		\$122,775	\$124,082	\$125,283	\$126,363	\$127,309	\$128,106	\$128,737	\$129,185	\$129,429
FCFE to owner		\$23,464	\$23,464	\$23,464	\$23,464	\$23,464	\$23,464	\$23,464	\$23,464	\$23,464
FCFE to creditor and charterer		\$99,3 11	\$100,619	\$101,819	\$102,899	\$103,845	\$104,642	\$105,273	\$105,721	\$105,966
FCFE to bank		\$74,483	\$75,464	\$76,364	\$77,174	\$77,884	\$78,481	\$78,955	\$79,291	\$79,474
FCFE to charter	гег	\$24,828	\$25,155	\$25,455	\$25,725	\$25,961	\$26,160	\$26,318	\$26,430	\$26,491
Outlay	(\$625,000)									
Total FCF to	(\$125,000)	\$23,464	\$23,464	\$23,464	\$23,464	\$23,464	\$23,464	\$23,464	\$23,464	\$23,464
Total FCF to	(\$496,000)	\$150,036	\$154,090	\$158,314	\$162,717	\$167,312	\$172,109	\$177,123	\$182,367	\$187,856
IRR for own	12%									
IRR for bank	29%									
Fuel savings	3180									
CO2 savings	10017									

Impacts on the Bulk Carrier

The cost of technology: \$620,000

Annual fuel use of the bulk carrier: 14,133 tonnes

Fuel cost of 0.5% sulfur Marine Diesel Oil: \$700 per tonne

Lifetime of water flow optimization technology: 9 years

IRR for EcoShip: 30%

CO₂ reduction in 9 years: 10,017 tonnes

SOx reduction in 9 years: 178 tonnes

The Market Timing

Data from UNCTAD Review of Maritime Transportation, various years